The Apple A15 SoC Performance Review: Faster & More Efficient
by Andrei Frumusanu on October 4, 2021 9:30 AM EST- Posted in
- Mobile
- Apple
- Smartphones
- Apple A15
CPU ST Performance: Faster & More Efficient
Starting off with this year’s review of the A15, in order to have a deeper look at the CPU single-threaded performance and power efficiency, we’re migrating over to SPEC CPU 2017. While 2006 has served us well over the years and is still important and valid, 2017 is now better understood in terms of its microarchitectural aspects in its components, and becoming more relevant as we moved our desktop side coverage to the new suite some time ago.
One continuing issue with SPEC CPU 2017 is the Fortran subtests; due to a lacking compiler infrastructure both on iOS and Android, we’re skipping these components entirely for mobile devices. What this means also, is that the total aggregate scores presented here are not comparable to the full suite scores on other platforms, denoted by the (C/C++) subscript in the score descriptions.
As always, because we’re running completely custom harnesses and not submitting the scores officially to SPEC, we have to denote the results as “estimates”, although we have high confidence in the accuracy.
In terms of compiler settings, we’re continuing to employ simple -Ofast
flags without further changes, to be able to get the best cross-platform comparisons possible. On the iOS side of things, we’re running on the newest XCode 13 build tools, while on Android we’re running the NDKr23 build tools.
In terms of performance and efficiency details, we’re swapping the graphs around a bit from now on – on the left axis we have the performance scores of the tests – larger bars here mean better performance. On the right-side axis, growing from right to left are the energy consumption figures for the platforms, the smaller the figure, the more energy efficient (less energy consumed) a workload was completed. Alongside the energy figure in Joules, we’re also showcasing the average power figure in Watts.
Starting off with the performance figures of the A15, we’re seeing increases across the board, with absolute performance going up from a low of 2.5% to a peak of +37%.
The lowest performance increases were found in 505.mcf_r, a more memory latency sensitive workload; given the increased L2 latency as well as slightly higher DRAM latency, it doesn’t come too unexpected to see a more minor performance increase. However, when looking at the power and efficiency metrics of the same workload, we see the A15 use up almost 900mW less than the A14, with energy efficiency improving by +22%. 520.omnetpp_r saw the biggest individual increase at +37% performance – power here went up a bit, but energy efficiency is also up 24%.
The smallest performance gains of the A15 are found in the most back-end execution bound workloads, 525.x264_r and 538.imagick_r improve by only 8.7%, resulting in an IPC increase of 0.6% - essentially within the realm of measurement noise. Still, even here in this worst performance case, Apple still managed to improve energy efficiency by +13%, as the new chip is using less absolute power even though clock frequencies have gone up.
The most power demanding workload, 519.lbm_r, is extremely bandwidth hungry and stresses the DRAM the most in the suite, with the A15 chip here eating a whopping 6.9W of power. Still, energy efficiency is generationally slightly improved as performance goes up by 17.9% - based on first teardown reports, the A15 is still only powered by LPDDR4X-class memory, so these improvements must be due to the chip’s new memory subsystem and new SLC.
Shifting things over to the efficiency cores, I wanted to make comparisons not only to the A14’s E-cores, but also put the Apple chips in context to the competition, a Snapdragon 888 in this context, comparing against a 2.41GHz Cortex-A78 mid-core, as well as a 1.8GHz Cortex-A55 little core.
The A15’s E-cores are extremely impressive when it comes to performance. The minimum improvement varies from +8.4 in the 531.deepsjeng_r, essentially flat up with clocks, to up to again +46% in 520.omnetpp_r, putting more evidence into some sort of large effective sparse memory access parallelism improvement for the chip. The core has a median performance improvement of +23%, resulting in a median IPC increase of +11.6%. The cores here don’t showcase the same energy efficiency improvement as the new A15’s performance cores, as energy consumption is mostly flat due to performance increases coming at a cost of power increases, which are still very much low.
Compared to the Snapdragon 888, there’s quite a stark juxtaposition. First of all, Apple’s E-cores, although not quite as powerful as a middle core on Android SoCs, is still quite respectable and does somewhat come close to at least view them in a similar performance class. The comparison against the little Cortex-A55 cores is more absurd though, as the A15’s E-core is 3.5x faster on average, yet only consuming 32% more power, so energy efficiency is 60% better. Even for the middle cores, if we possibly were to down-clock them to match the A15’s E-core’s performance, the energy efficiency is multiple factors off what Apple is achieving.
In the overview graph, I’m also changing things a bit, and moving to bubble charts to better spatially represent the performance to energy efficiency positioning, as well as the performance to power positioning. In the energy axis graphs, which I personally find to be more representative of the comparative efficiency and resulting battery life experiences of the SoCs, we see the various SoCs at their peak CPU performance states versus the total energy consumed to complete the workloads. On the power axis graphs, we see the same data, only plotted against average power. Generally, I find distinction of efficiency here to be quite harder between the various data-points, however some readers have requested this view. The bubble size corresponds to the average power of the various CPUs, we’re measuring system active power, meaning total device workload power minus idle power, to compensate components such as the display.
Apple A15 performance cores are extremely impressive here – usually increases in performance always come with some sort of deficit in efficiency, or at least flat efficiency. Apple here instead has managed to reduce power whilst increasing performance, meaning energy efficiency is improved by 17% on the peak performance states versus the A14. If we had been able to measure both SoCs at the same performance level, this efficiency advantage of the A15 would grow even larger. In our initial coverage of Apple’s announcement, we theorised that the company might possibly invested into energy efficiency rather than performance increases this year, and I’m glad to see that seemingly this is exactly what has happened, explaining some of the more conservative (at least for Apple) performance improvements.
On an adjacent note, with a score of 7.28 in the integer suite, Apple’s A15 P-core is on equal footing with AMD’s Zen3-based Ryzen 5950X with a score of 7.29, and ahead of M1 with a score of 6.66.
The A15’s efficiency cores are also massively impressive – at peak performance, efficiency is flat, but they’re also +28% faster. Again, if we would be able to compare both SoCs at the same performance level, the efficiency advantage of the A15’s E-cores would be very obvious. The much better performance of the E-cores also massively helps avoiding the P-cores, further improving energy efficiency of the SoC.
Compared to the competition, the A15 isn’t +50 faster as Apple claims, but rather +62% faster. While Apple’s larger cores are more power hungry, they’re still a lot more energy efficient. Granted, we are seeing a process node disparity in favour of Apple. The performance and efficiency of the A15 E-cores also put to shame the rest of the pack. The extremely competent performance of the 4 efficiency cores alongside the leading performance of the 2 big cores explain the significantly better multi-threaded performance than the 1+3+4 setups of the competition.
Overall, the new A15 CPUs are substantial improvements, even though that’s not immediately noticeable to some. The efficiency gains are likely key to the new vastly longer battery longevity of the iPhone 13 series phones – more on that in a dedicated piece in a few days, and in our full device review.
204 Comments
View All Comments
techconc - Tuesday, October 5, 2021 - link
Agreed. Google did some early pioneering work with computational photography. However, unlike you, I don’t think most Android users understand just how far Apple has pushed in these areas, especially with regard to real time previews that require more processing power than is available on Android devices. This year’s “cinema mode” is just another example of that.Apple focuses on features and then designs silicon around that. Most others see what’s available in silicon and then decide which features they can add.
Nicon0s - Saturday, October 16, 2021 - link
>I don’t think most Android users understand just how far Apple has pushed in these areas, especially with regard to real time previews that require more processing power than is available on Android devices.I don't think you understand what you are taking about. Real time preview was implemented on Pixel 4 with the old Snapdragon 855. You are just trying to make it seem a much bigger deal that it is.
What's Apple has pushed for is to match camera software features implemented by Google and other Android manufacturers.
techconc - Monday, October 18, 2021 - link
Yeah, YEARS after iPhones have had this feature because Android phones have been anemic by comparison in terms of processing capabilities. The same with Apple adding this feature for video via Cinema mode. The point being, you're attempting to make it sound as if Android has completely led and pioneered computational photography and that's not true. Google has led in some areas, Apple has led in others. If you think computational photography is an area where Android devices currently lead, then don't really know what you're talking about.Nicon0s - Tuesday, October 19, 2021 - link
"Yeah, YEARS after iPhones have had this feature because Android phones have been anemic by comparison in terms of processing capabilities. "That's only what you think. That live preview is mostly dependent on the ISP anyway, which is the one doing the processing.
"The same with Apple adding this feature for video via Cinema mode."
A boring, pointless feature most won't use.
"The point being, you're attempting to make it sound as if Android has completely led and pioneered computational photography and that's not true. "
It is true. The advancements in terms of computational photography that we get with modern smartphones today were lead by Android manufacturers, Apple only followed. I still remember how apple fanboys all over the interned claimed that Google faked the iphone photo when they introduced Night Sight with Pixel 3. Night Sight was better than it seemed possible changing the paradigm when taking photos in low light.
You want to see another slew of new photo features, take a look at the Pixel 6 announcement. While apple introduced what? Fake video blur? LoL
" If you think computational photography is an area where Android devices currently lead, then don't really know what you're talking about."
Actually I'm the only one that knows what hes talking about.
Nicon0s - Saturday, October 16, 2021 - link
>A key differences is that the SE 2020 does computational photography/videography in real time, which necessitates a decently powerful professor to execute those tasks? The Pixel 4a doesn’t have Live HDR in preview/during recording when recording videos (only in stills), nor does it have real-time Portrait Mode/bokeh control simultaneously with Live HDR nor something like Portrait Lighting control before taking a pic?What's the most important is the results.
Also I'm pretty sure the 4a can approximate the HDR results in real time in the viewfinder, which is not really a big deal. I've seen it on other mid-range Androids as well.
The idea is you can have very decent computational photography even on slower phones in terms of CPU and GPU while Apple does intentionally cripple the capabilities of some of their phones, like lack of night mode on the SE, heck even on the iphone X night, mode should be possible no problem
>The 4a is great for the price and despite using a much slower processor, it has a pretty good camera. But this also makes it have disadvantages—and this is shown across the Pixel lineup, including the 5.
Honestly I don't see any disadvantages because of the performance vs pretty much any phone around it's price range so including the SE.
techconc - Monday, October 18, 2021 - link
>What's the most important is the results.Yeah, and seeing live previews helps with a photographer's composition and actually achieve those results. Without proper live previews, better results are more a matter of luck than skill.
Nicon0s - Tuesday, October 19, 2021 - link
"Yeah, and seeing live previews helps with a photographer's composition and actually achieve those results. Without proper live previews, better results are more a matter of luck than skill."Nonsense, you don't really understand photography. Like I've said what matter are the result. If I point my phone at the same subject and don't get an "approximated HDR result" in the live preview doesn't mean I'm going to take a worse photo or that I generally take worse photos.
Blark64 - Monday, October 11, 2021 - link
>The road for computational photography was paved by Android smaprhones not Apple.Computational photography on the Pixel 4a with the very old SD 730 is better than on an iphone SE 2020 for example.
Your historic perspective on computational photography is, well, shortsighted. Computational photography as a discipline is decades old (emerging from the fields of computer vision and digital imaging), and I was using computational photography apps on my iPhone 4 in 2010.
Nicon0s - Saturday, October 16, 2021 - link
We are taking about modern phones and modern solutions not the start of computational photography. Apple's camera software evolved as a reaction to the excelent camera features implemented in Android phones. It's not your iphone 4 that made computational photography popular and desirable it's Android manufacturersNicon0s - Tuesday, October 5, 2021 - link
>I believe Apple can mint money by selling their SOCs to Android smartphone manufacturers.I would really like to see that but more for the cost perspective.
Things to consider: it doesn't have a model so additional cost.
Need for hardware support as it's a new platform, support for developing the motherboard.
Need for support for software optimisations/ camera optimisations etc.
Need for support for drivers, when OEMs buy an SOC they buy it with driver support for a certain amount of years and this influences the final price.
All in all an A15 would probably cost an Android OEM a few times more than a Qualcomm SOC. So the real question is: would it be worth it?